Improving Software Size Estimates by Using Probabilistic Pairwise Comparison Matrices¹ Dr. Jairus Hihn Jet Propulsion Laboratory, California Institute of Technology Jairus.M.Hihn@jpl.nasa.gov Karen T. Lum Jet Propulsion Laboratory, California Institute of Technology Karen.T.Lum@jpl.nasa.gov ### **Abstract** The Pairwise Comparison technique is a general purpose estimation approach for capturing expert judgment. This approach can be generalized to a probabilistic version using Monte Carlo methods to produce estimates of size distributions. probabilistic pairwise comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as reference modules. In addition to describing the methodology, the results of the case study are also included. This paper is an extension of the work presented in [1] and will show how the original software size estimates compared to the actual delivery size. It will also describe the techniques used to modify the approach based on lessons learned. The results because they are based on only one case do not validate the effectiveness of the proposed approach but are suggestive that the technique can be effective and support the conclusion that further research is worth pursuing. ### 1. Introduction Software cost estimates are typically required in the early stages of the life-cycle when requirements and design specifications are immature. Under these conditions, the production of an accurate cost estimate requires extensive use of expert judgment and the quantification of significant estimation uncertainty. Research has shown that under the right conditions, expert judgment can yield relatively "accurate" estimates [2]. Unfortunately, most expert judgment-based estimates do not meet these conditions and frequently degenerate into outright guessing. At its best, expert judgment is a disciplined combination of a 'best guess' and historical analogies. Pairwise comparison matrices provides a formal, systematic means of extracting, combining, and capturing expert judgments and their relationship to analogous reference data [3]. The use of matrices of pairwise comparisons as an approach for deriving a cardinal ranking vector from subjective paired comparisons was first introduced by Saaty in 1977 as part of the Analytical Hierarchy Process (AHP) [4]. AHP, as originally proposed, is a decision-making or prioritization technique. The usefulness of this technique for software size estimation was recognized in the mideighties [5, 6]. Bozoki provided a more detailed description of his approach in [7]. Using a pairwise comparison matrix to estimate software size requires an expert's judgment as to each module's relative bigness compared to one another. The effectiveness of this approach is supported by experiments that indicate that the human mind is better at identifying relative differences than at estimating absolute values [8,9]. In this paper, for ease of exposition, pairwise comparison matrices will be called judgment matrices following [10]. An opportunity to apply the pairwise comparison technique arose when a cost estimate was required for a mission critical ground software project. The team wanted to estimate the effort for its next software development task based on a recently completed development activity. The software team members wanted to be more rigorous in how they approached the estimating task. They also imposed a number of constraints. They conceptualized their system in terms of delivered capabilities and resisted sizing a software system by lines of code or function points. Hence we could not ask them to directly size their system. Since there were numerous sources of potential risk and uncertainty associated with the next delivery, the technical staff wanted to provide ranges for the ratio comparisons in order to visualize the actual probability distribution for the estimates. In addition, they had multiple sources of historical software size data that could be incorporated. While more information is generally considered helpful, this particular situation presented some complexities that ¹ The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. the standard approach did not address well when incorporating uncertainty. Therefore, the pairwise technique had to be adapted to address distributional inputs in the context of multiple reference analogies. A description of how this technique was applied to effort estimation in combination with software cost models is provided in [1]. This paper describes the approach and algorithms used to generalize the paired ratio comparison matrix technique in order to utilize information inherent in multiple estimates, multiple reference projects, and estimator range information for the purpose of generating estimated size distributions. In addition, this paper details the application of this technique in the context of an actual software project, in order to assess its effectiveness. ## 2. Pairwise Comparison Technique Creating a judgment matrix involves creating an $n \times n$ matrix $(\mathbf{A}^{n \times n} = [a_{ij}])$, where n is the number of entities (for software, this could be modules, use cases, requirements, etc.), being compared. Each element, a_{ij} , in the matrix is an estimate of the relative size of entity i with respect to entity j, that is $$\frac{Size_i}{Size_j}$$. The properties of a judgment matrix require that elements be: - (1) reciprocal, $a_{ij} = 1/a_{ji}$, which means that entity i is a_{ij} times bigger than entity j, then entity j is $1/a_{ij}$ times smaller than entity i; - (2) the same size as itself, which means that all diagonal elements $a_{ii} = 1$. The implication of these properties is that only the upper or lower triangle of the judgment matrix must be filled in. For example, see Table 1, which is a judgment matrix with estimates of the relative software size of four modules. The values in Table 1 indicate that Module 1 is two times as big as Module 2, three times bigger than Module 3, and four times bigger than Module 4, and so forth. Note that there is no a priori reason that all the values in the upper triangle are greater than 1. Table 1. Example judgment matrix | | Module 1 | Module 2 | Module 3 | Module 4 | |----------|----------|----------|----------|----------| | Module 1 | | 2.00 | 3.00 | 4.00 | | Module 2 | | | 1.50 | 2.00 | | Module 3 | | | | 1.50 | | Module 4 | | | | | Based on Conditions 1 and 2 above, the matrix can be completed as follows: Table 2. Example completed judgment matrix | | Module 1 | Module 2 | Module 3 | Module 4 | |----------|----------|----------|----------|----------| | Module 1 | 1.00 | 2.00 | 3.00 | 4.00 | | Module 2 | 0.50 | 1.00 | 1.50 | 2.00 | | Module 3 | 0.33 | 0.67 | 1.00 | 1.50 | | Module 4 | 0.25 | 0.50 | 0.67 | 1.00 | One way to interpret the judgment matrix is that each column yields a different ranking vector for the purpose of determining the relative size of the four entities. Each vector is normalized such that the module that corresponds to itself (the diagonal elements) is always 1, and it is the reference module against which all comparisons in the same column are made. Therefore, column 1 indicates that module 2 is half as big as module 1; module 3 is 33% of the size of module 1; and module 4 is 25% of module 4. Each column can be interpreted in this manner. In Table 2, there are four different rankings (an $n \times n$ matrix yields n independent ranking vectors). In a case where different ranking vectors have different rank orders for each entity, there is more estimation uncertainty around the entities being compared. A special case exists when a judgment matrix is perfectly consistent. This occurs when $a_{ij} \times a_{jk} = a_{ik}$ for all i, j, k. If a judgment matrix is consistent, then each vector is equivalent to all the others, or each vector can be transformed into the other via a linear transformation. This means that there is really one vector of unique information. Time has been wasted in making all of these pairwise comparisons in the example, since only four numbers needed to be guessed and not six. Fortunately, it turns out that judgments are rarely consistent, unless the estimator is cheating. More frequently, inconsistent matrixes will result such as that illustrated in Table 2. Note that although column 1 and column 2 can be linearly transformed into the other, Table 2 is an inconsistent matrix because columns 3 and 4 are linearly independent or not consistent with column 1 or 2. Hence Table 2 provides 3 unique vectors from which a final estimate can be generated. There have been a number of mathematical procedures proposed for deriving a single ranking vector from an inconsistent judgment matrix. These produce numbers that meet the conditions of a ratio scale. This means the slope of a line has been defined but the intercept or origin of the scale is still unknown. Therefore, the actual sizes of the modules are unknown, and only their relative sizes are known. However, as long as at least one of the modules used to derive judgment matrix is an historical analogy, that module can be used to determine the intercept or origin to determine the estimated sizes for each module. The original approach proposed by [4] was to use the Perron-Frobenius right eigenvector. Research has shown, however, that this is one of the worst techniques to use [11]. There are many potential solutions to this problem. The Geometric Mean method, which is very easy to calculate, has been advocated by many authors for various reasons. [11,12]. Miranda chose to use the geometric mean procedure because of its simplicity and the results achieved in during experimentation with thirty participants [13]. Therefore, the geometric mean is the recommended approach used in this case. The Geometric Mean is calculated as $$v_i = \prod_{j=1}^n a_{ij}^{1/n}$$, which yields a vector $$\mathbf{V} = \begin{bmatrix} v_1 \\ v_2 \\ v_{\dots} \\ v_n \end{bmatrix}$$ that meets the requirements of a ratio scale. The example in Table 2 would yield the vector As an example, the 2.21 is derived from $(1\times2\times3\times4)^{1/4}$. Once the ratio scale vector is calculated, the size of each known entity can be calculated using at least one known historical analogy to normalize the vector, and in essence define the origin for the ratio scale. This allows one to convert the vector to cardinal numbers yielding absolute values of the size estimates. The size of at least one of the elements in the ratio scale is needed as a reference to derive a multiplier m $$m = \frac{Size_{ref}}{v_{ref}}$$, ref is one of the modules i through n which is used to calculate the size of the other elements. The formula is as follows: $$\mathbf{S} = \begin{bmatrix} Size_1 \\ Size_2 \\ Size_{...} \\ Size_n \end{bmatrix} = m \times \mathbf{V} = \begin{bmatrix} m \times v_1 \\ m \times v_2 \\ m \times v_{...} \\ m \times v_n \end{bmatrix}$$ Using the example in Table 2 and assuming the reference module is v_3 at 2000 lines of code, this step would result in the following: $$m = 2000/0.76 = 2632.15$$ $Size_1 = 2632.15 \times 2.21 = 5826$ $Size_2 = 2632.15 \times 1.11 = 2913$ $Size_3 = 2632.15 \times 0.76 = 2000$ $Size_4 = 2632.15 \times 0.54 = 1414$ In summary an estimate of size using pairwise comparison matrices can be generated using four steps: - 1) Estimate the relative size of all modules - 2) Derive the judgment matrix - 3) Compute the geometric mean across each row in the matrix - 4) Derive size estimate by normalizing values to the reference module # 3. Probabilistic Pairwise Comparison Technique Two major adaptations to the basic pairwise comparison technique described above were made: (1) the incorporation of distributions for pairwise judgments and (2) the use of multiple reference modules. There are many distributions that could be used. A log normal distribution would make it possible to derive a closed form solution. However, it is difficult for engineers to estimate the mean and variance of a log normal distribution. The use of estimation ranges (low, mode, and high) was a found to be a more practical approach. Since it is important for a software manager and engineers to have a clear understanding of their inputs and estimates, the simplest distribution cognitively is the triangular distribution. That is, $$a_{ii} \sim TriPDF(min, mode, max)$$ where the element a_{ij} is a triangular distribution TriPDF with a minimum variate (min), a peak variate (mode), and a maximum variate (max). This requires the use of a Monte Carlo technique to combine the different distributions, but with modern computers and software that is not a difficult task. To illustrate the technique the example from the previous section will be used. The first step is that the subjective judgments in Table 1 can be entered as distributions as shown in Table 3. Here are three elements as distributions and three as point values. Table 3. a_{ii} as distributions | | Module 1 | Module 2 | Module 3 | Module 4 | |----------|----------|----------|----------|---------------------------| | Module 1 | | 2 | 3 | <i>TriPDF</i> (3, 4, 6) | | Module 2 | | | 1.5 | <i>TriPDF</i> (2, 2.5, 3) | | Module 3 | | | | <i>TriPDF</i> (1, 1.5, 3) | | Module 4 | | | | | In Table 3, element a_{14} and element a_{34} are entered as distributions with $a_{14} \sim TriPDF\left(3,4,6\right)$ and $a_{34} \sim TriPDF\left(1,1.5,3\right)$, respectively. The element a_{14} would be interpreted as Module 1 is most likely 4 times bigger than Module 4, but could be as much as 6 times bigger, or at a minimum, it could be the three times the size. The element a_{34} would be interpreted as Module 3 is most likely 1.5 times bigger than Module 4, but could be as much as 3 times bigger, or at a minimum, it could be the same size. Random draws are made from these distributions to determine the geometric mean vector, which becomes: $$\mathbf{V}_{PDF} = \left[v_{PDF_i} = \prod_{j=1}^{n} a_{ij}^{1/n} \right], \text{ where}$$ $$a_{ij} \sim TriPDF(min, mode, max).$$ The result is that each element in the geometric mean vector is now a distribution vPDFi. Another major adjustment to the basic pairwise technique is the manner in which multiple reference software modules are incorporated. The basic method described above works well for the case where there is a single reference analogy. However, having multiple reference analogies with the typical case of an inconsistent judgment matrix creates a dilemma. A different total size estimate is generated depending upon which reference module is used. The solution proposed here involves incorporating the multiple references by capturing the different possible reference values as a distribution. This way the basic Monte Carlo structure that has been set up here can be used as a general purpose approach for any type of ranking problem. A triangular distribution is used to capture the differences between the multiple reference-derived multipliers m_{PDFref_i} through m_{PDFref_x} $$m_{PDFref_i} = \frac{Size_{ref_i}}{v_{PDFref_i}}$$ If the matrix was consistent, having multiple references should theoretically result in the same multiplier value $$m_{PDF}^* = m_{PDFi} = m_{PDF_n}.$$ A triangular distribution is merely a simple method of capturing the multiple references. Therefore, one solves for a single distribution of the multipliers m_{PDF}^* $m_{PDF}^* \sim TriPDF \big(minMultipl\ ier\ , GMmultipli\ er\ , maxMultipl\ ier\ \big)$ where $$minMultiplier = \min_{i=1}^{x} m_{PDF ref_i}$$ $$GMmultiplier = \prod_{i=1}^{x} (m_{PDF ref_i})^{1/x}$$ $$maxMultiplier = \max_{i=1}^{x} m_{PDF ref_i}$$ for i through x number of references. For example, the first four columns in Table 4 are the completed judgment matrix shown in Table 3 based on $a_{ij} \sim TriPDF (min, mode, max)$. The gray shaded cells of the matrix are completed using the properties of a judgment matrix. Therefore, elements a_{11} and a_{22} are the same size as itself, 1. Element a_{42} is the reciprocal of element a_{24} , which is $$\frac{1}{TriPDF(2,2.5,3)}.$$ The remainder of the judgment matrix was completed in a similar manner. Table 4. Completed matrix and multipliers based on distributional inputs² | | Module 1 | Module 2 | Module 3 | Module 4 | Geometric | References | Multiplier PDF | Size Estimate | |----------|----------|----------|----------|----------|--------------|-----------------|-----------------------------|-----------------------------| | | | | | | Mean PDF | $(Size_{refi})$ | $(Size_{refi}/v_{PDFrefi})$ | PDF | | | | | | | (v_{PDFi}) | | | $Size_i \times (m^*_{PDF})$ | | Module 1 | 1.00 | 2.00 | 3.00 | 4.33 | 2.26 | 6000 | 2657.1 | | | Module 2 | 0.50 | 1.00 | 1.50 | 2.50 | 1.17 | 3000 | 2563.72 | | | Module 3 | 0.33 | 0.67 | 1.00 | 1.83 | 0.80 | 2000 | 2503.36 | | | Module 4 | 0.23 | 0.40 | 0.545 | 1.00 | 0.47 | | | To be solved for | Using the algorithm described above yields the geometric mean distribution function, whose mean values are shown in the Geometric Mean PDF column of Table 4, $$\begin{bmatrix} 2.26\\ 1.17\\ 0.80\\ 0.47 \end{bmatrix}.$$ Having multiple references and an inconsistent judgment matrix results in many multipliers of different values. For example, given that the actual sizes of Modules 1, 2, and 3 are 6000, 3000, and 2000 lines of code respectively, and using the average values shown in Table 4, the expected multipliers would be $$\begin{split} &Expected~(m_{PDF~ref_1}) = Size_{ref_1} \div v_{PDF~ref_1} = 6000 \div 2.26 = 2657.1 \,, \\ &Expected(m_{PDF~ref_2}) = Size_{ref_2} \div v_{PDF~ref_2} = 3000 \div 1.17 = 25637 \,, \text{ and} \\ &Expected~(m_{PDF~ref_2}) = Size_{ref_3} \div v_{PDF~ref_1} = 2000 \div 0.80 = 2503.4 \,. \end{split}$$ If the multiplier derived from Module 1 is selected, the expected size of Module 4 would be $$Expected(Size_4) = 2657.1 \times 0.47 = 1259$$, while if the multiplier derived from Module 3 is used, the expected size of Module 4 would be $$Expected(Size_{A}) = 2503.4 \times 0.47 = 1177$$. In this example, having multiple references results in three different size estimates. A problem arises in deciding which multiplier should be used to estimate the remaining unknown modules. To derive the size estimate of Module 4, the triangular distribution of the minimum multiplier, geometric mean of the multipliers as a mode, and maximum multiplier is used. This produces a distribution for m_{PDF}^* as shown in Figure 1. Therefore, the size of Module 4 is $$Size_{PDF4} = m_{PDF}^* \times v_{PDF4},$$ which is a distribution that can be shown as a cumulative probability curve (Figure 2). ²The means of the distributions are shown in the cells. Figure 1. Cumulative distribution function of $m_{\scriptscriptstyle PDF}^*$ Figure 2. Module 4 size cumulative distribution function based on Table 3 inputs ### 4. Application The techniques described above were applied to the estimation of a mission critical ground software delivery at JPL. The project wished to estimate the size and cost of its next delivery (Delivery 2) based on analogy to its current delivery (Delivery 1). However, many actuals were not recorded during the current delivery and therefore needed to be reconstructed. As it was easier to reconstruct effort data, the software team first estimated the direct cost of Delivery 2 through pairwise comparison to delivery 1 using effort as the size factor. The direct effort estimate resulted in an estimate much lower than the project team had expected [1]. The project team was then convinced to attempt an estimate using a cost model. Since cost models require size as an input, the Probabilistic Pairwise Comparison technique was used to estimate the size of Delivery 2. The Delivery 1 source code was run through a code counter, and the pairwise technique was then repeated for estimating the size of Delivery 2 using the modules of Delivery 1 as reference points. A major step in obtaining acceptance from the team was allowing them to think of the software in terms of capabilities. This was very important since their cognitive model was based on the concept of capabilities and the team had no experience in estimating software size by lines of code or function points. Since the pairwise comparison technique is based on estimating the relative size differences between modules, it was assumed that the relative difference or ratios when comparing functions by capability would be the same as comparing a function by the number of lines of code-subject to a linear transformation. This is a critical assumption, which will be discussed in more detail at the end of the paper. The first delivery consisted of one major software function (Function A) that could be further subdivided into five modules. The second delivery consisted of two major software functions (Functions B and C) that each had five modules. Code counts for the user interface modules of each Function were not available, as they were in a language for which a code counter was not available 1. Therefore only four modules of each function were compared with each other. The four modules for each second delivery software function were compared with the four modules of the first delivery software function based on their relative size. Function B and Function C were not compared with each other, because the two software functions would be developed by different people who found it difficult to compare functions that had not been developed yet. Therefore the pairwise judgment matrix of this exercise produced - ¹ The cost of the user interfaces for Function B and Function C were estimated in a different manner, using direct effort comparisons, since size references were not available for the user interface module of Function A. two 8 x 8 matrices with 64 possible comparisons per matrix. (Figure 3 and Figure 4). A significant adaptation to the paired comparisons method described by others is that the estimators were allowed to give ranges for $$a_{ij} = \frac{Size_i}{Size_j}, \text{ where}$$ $$a_{ij} \sim TriPDF(min, mode, max).$$ These ranges were easily captured and a Monte Carlo distribution of the ratio scales was easily implemented in Microsoft Excel®. | | 1 | | Funct | ion B (Delivery 2) | | | Function A | (Delivery 1) | 7 9 | |----|-------------------------|------|---------|--------------------|-----------------|--------------------|-----------------|--------------------|----------------| | | | Core | Mapping | Stochastics | Smoother | EM | EBI | PD | CI | | | Core | 1 | 1 1 | TriPDF(5, 75,1) | TriPDF(5,75,1) | 0.2 | 2 | 1 | 1.5 | | .5 | Mapping | | t | TrPDF(.25,.375,.5) | TriPDF(5,75,1) | 0.2 | 1 | 1 | 0.75 | | E | Stochastics | | | 1 | TriPDF(1,1.5,2) | TriPDF(25,625,1) | TriPDF(1,2,3) | TriPDF(5,1.25,2) | TriPDF(2,3,4) | | Ē | Smoother | | | | 1 | TriPDF(25, 375, 5) | TriPDF(1,1.5,2) | TriPDF(25, 375, 5) | TriPDF(5,75,1) | | A | Force Models | | 10 | 3 3 | 8 | 1 | | | § | | 8 | Event Based Integration | | 1 | | | | 10 | | | | E | Partial Derivatives | | 1.5 | 2 | 8 | 8 | | ্ৰ | 3 | | æ | Core Integration | | | 3 | - 8 | 3 | 9 | 1/4 | 100 | Figure 3. Original comparison inputs for Function B vs. Function A modules | | | | F | unction C (Delivery 2) | | E. | Function A | (Delivery 1) | | |----|-------------------------|----|-----------------|------------------------|--------------------------|----------------------|--------------------|--------------------|----------------------| | | | MM | DM | FF | Stations | FM. | EBI | PD | CI | | C | Measurement Models | 1 | TriPDF(2.2.5,3) | 2 | TrP0F(2,2.5,3) | TrPDF(0.5(0.7,1) | TriPDF(2,2.25,2.5) | TriPDF(2,2.25,2.5) | TrPDF(1.5,1.75,2) | | 8 | Delay Models | | 1 | TriPDF(0.5,0.825,0.75) | 0.5 | TriP0F(0.2,0.25,0.5) | TriPDF(1,1.25,1.5) | TriPDF(0.7,0.75,1) | TriPDF(0.75,0.875,1) | | 필 | File Formats | | 13 3 | 1 | TriPDF(1.25,1.375,1.5) | TriPDF(0.4,0.45,0.5) | TriPDF(1,1.25,1.5) | TriPDF(1,1.25,1.5) | TriPDF(0.75,0.875,1) | | Œ. | Stations | 1 | 1 1 | 00 5 | - Control of the control | TriPDF(0.4,0.45,0.5) | TriPDF(0.5,0.75,1) | TriPDF(1,1.25,1.5) | TriPDF(0.75,1,1.25) | | 4 | Force Models | | | | | 1 | | | | | 5 | Event Based Integration | | 17 8 | | | 1 | 7 19 8 | | 7 8 | | 5 | Partial Derivatives | 2 | | | | | 4 ac 3 | 1 | 3 | | Œ. | Core Integration | | | 9 | | | 5 8 | | 31 6 | Figure 4. Original comparison inputs for Function C vs. Function A modules Quadrants II and III (Figure 5) of the matrices were easily completed utilizing the judgment matrix properties: $a_{ij} = 1/a_{ji}$ and $a_{ii} = 1$. Since Delivery 1 was completed and all the actuals were known (Table 5), Quadrant IV was derived with the actuals as reference points. For example, it is known from actuals that the development size of Force Models was approximately 1.45 times more than Event Based Integration effort and 1.48 times more than the Partial Derivatives effort, etc. As quadrant IV is based on actuals, it is the only consistent quadrant, satisfying the property a_{ij} x $a_{jk} = a_{ik}$. Since the other three quadrants are based upon subjective judgments, they are unlikely to be consistent. The matrix was completed such that a triangular random variable draw formula was entered in the cells for which ranges were given (Figure 5). The geometric mean of the rows for the matrix was then computed to arrive at the ratio scale vector (labeled Geometric Mean PDF in Figure 6). | | A | В | C | 0 | - F | F | G | Н | - L. | J | 1 | |---|-------|-------------------------|------|---------|-------------------|----------|------|---------------|------------|------|---------------| | 1 | - | | | Functio | on B (Delivery 2) | | *** | Function A (D | elivery 1) | 7.0 | | | 2 | | | Core | Mapping | Stochastics | Smoother | FM | EBI | PD | CI | | | 3 | 8 | Core | 1.00 | 1.00 | 0 6 | 0.75 | 0.20 | 2.00 | 1.00 | 1.50 | | | 4 | ion i | Mapping | 1.00 | 1.00 | 0 8 | 0.75 | 0.20 | 1.00 | 1.00 | 0.75 | \rightarrow | | 5 | 15 | Stochastics | 1.33 | 2.67 | 1.00 | 1.60 | 0.63 | 2.00 | 1.25 | 300 | \mathcal{Z} | | 6 | Z | Smoother | 1.33 | 1.33 | 0.67 | 1.00 | 0.38 | 1.50 | 0.38 | 0.75 | Ĭ | | 7 | 4 | Force Models | 5.00 | 5.00 | | 2.67 | 1.00 | 1 5 🗸 | 1.48 | 0.66 | | | 8 | i i | Event Based Integration | 0.50 | 1.00 | 6 | 0.67 | 0.69 | 13 | 1.02 | 0.45 | | | 3 | 100 | Partial Derivatives | 1.00 | 1.00 | 0.80 | 2.67 | 0.67 | 0.98 | 1.00 | 0.44 | | | n | Œ | Core Intervation | 0.67 | 1.33 | 0.33 | 1 33 | 1.52 | 2.20 | 2.26 | 1.00 | | Figure 5. Random variable formulas are entered in cells for elements with a range of comparisons Table 5. Actual size of reference modules³ | | Actual Size (SLOC) | |-------------------------|--------------------------| | Force Models | 6,500 | | Event Based Integration | 4,500 | | Partial Derivatives | 4,400 | | Core Integration | 10,000 | | User Interface | Code count not available | | 1 | В | C | D | E | F | G | H | 1 | 3 | K | L | M | N | |----|-------------------------|------|------------|--------------|----------|------|-------------------------|------|------|----------|----------------|-----------------------|-------------------| | 0 | | | Function B | (Delivery 2) | | | Function A (Delivery 1) | | | | References | Multiplier
PDFs to | Estimate
PDF | | 5/ | 78 | Core | Mapping | Stochastics | Smoother | FM | EBI | PD | CI | Mean PDF | (SLOC) | get | (SLOC) | | 0 | Core | 1.00 | 1.00 | 0.75 | 0.75 | 0.20 | 2.00 | 1.00 | 1.50 | 0.09 | | | 5152.189 | | | Mapping | 1.00 | 1.00 | 0.38 | 0.75 | 0.20 | 1.00 | 1.00 | 0.75 | 0.07 | S | 3 3 | 3972.881 | | | | 1.33 | 2.67 | 1.00 | 1.50 | 0.63 | 2.00 | 1.25 | 3.00 | 0.16 | | | 8824.702 | | Į. | Smoother | 1.33 | 1.33 | 0.67 | 1.00 | 0.38 | 1,50 | 0.38 | 0.75 | 0.09 | S cons | | 4787.212 | | 4 | | 5.00 | 5.00 | 1.60 | 2.67 | 1.00 | 1.45 | 1.48 | 0.66 | 0.20 | 6546 | 32788.4 | September 1 | | 1 | Event Based Integration | 0.50 | 1.00 | 0.50 | 0.67 | 0.69 | 1.00 | 1.02 | 0.45 | 0.07 | 4520 | 61104.7 | | | | Partial Derivatives | 1.00 | 1.00 | 0.80 | 2.67 | 0.67 | 0.98 | 1.00 | 0.44 | 0.10 | 4412 | 43895.7 | | | 1 | Core Integration | 0.67 | 1.33 | 0.33 | 1.33 | 1.52 | 2.20 | 2.26 | 1.00 | 0.12 | 9965 | 81450,2 | | | | | | | | | | | | | 1 8 | GM Multiplier | 51734.2 | 22737 | | | | | | | | | | | | | Min Multiplier | 32788.4 | Total
Function | | | | | | | | | | | | | Max Multiplier | 81450.2 | B Size | | 1 | | | | | | | | | | | m* per | 55324.3 | | Figure 6. A single multiplier PDF m_{PDF}^{*} is derived from the multiple reference multipliers and estimates are a function of m_{PDF}^{*} As there were multiple references (four modules from Delivery 1), computing the reference multiplier required extra steps. Since the subjective pairwise judgments were inconsistent in this application, four reference modules produced four different multipliers, each producing significantly different estimates. A Monte Carlo run on the triangular random draw of the four multipliers using the lowest value multiplier as a minimum, the geometric mean of the four multipliers as the mode, and the highest value multiplier as a maximum was performed: $m_{PDF}^* \sim TriPDF(minMultipler, GMmultipler, maxMultipler)$ An estimate of each Delivery 2 module was then calculated using the new randomly drawn multiplier m_{PDF}^{*} . Allowing ranges in the pairwise judgments and drawing from the four possible multipliers capture the uncertainty in the estimate and serve to average out estimation errors. Utilizing a Monte Carlo technique produces size cumulative distribution functions for each module of the Delivery 2 functions, each Delivery 2 function, and the total Delivery 2 size. Table 6 and Table 7 show the resulting distributions of each element in Function B and Function C respectively, as well as the total size of each function in delivery 2. Table 6. Function B size estimates | | | | | | Function B | |-----------------|------|---------|----------|-------------|------------| | | Core | Mapping | Smoother | Stochastics | Total SLOC | | 5th Percentile | 3621 | 2800 | 3316 | 5880 | 15898 | | Mode | 5740 | 3831 | 4985 | 10374 | 22211 | | 95th percentile | 6796 | 5230 | 6444 | 11878 | 29950 | ³Code Counts derived using Galorath's Count95 tool. Table 7. Function C size estimates | | Measurement
Models | Delay
Models | File
Formats | Stations | Function C
Total SLOC | |-----------------|-----------------------|-----------------|-----------------|----------|--------------------------| | 5th Percentile | 8209 | 3100 | 4525 | 3976 | 19866 | | Mode | 10737 | 3789 | 5971 | 4833 | 24356 | | 95th percentile | 12837 | 4897 | 7053 | 6241 | 30899 | ### 5. Results Delivery 2 was completed in nine months and within 10% of the budget with 24,506 lines of code. Not all of the original capabilities were included in the release. The task leads subjectively estimated the differences between the planned module capabilities and the capabilities actually delivered, which varied from 0 to 100%, with most modules at 90% of the plan. While Function B delivered 90% of its capabilities, Function C delivered significantly reduced capability than planned. Almost none of the Delay Models functionality was delivered. Only 50% of Measurement Models and 90% of File Format capabilities delivered. The size estimates were adjusted for the differences in planned functionality and are compared with the actual sizes in Table 8 and Table 9. Functions B and C were collectively overestimated by 44%. The team's estimate also produced a very wide range across the modules. On the surface, this appears to be a mediocre performance, but compared to an average size underestimate of 70% on JPL Deep Space Network subsystems upgrades (from 1989 to 1997) and underestimates in excess of several hundred percent on recent JPL flight software systems, it is a marked improvement, especially considering that the team had virtually no experience in estimating size by lines of code. Also note that the actuals on most of the functions fall outside of what was estimated as the 5th to 95th percentile which indicates the estimate range is to narrow. This type of problem is well documented in the literature and can be adjusted for. Table 8. Function B delivered software size vs. adjusted size estimates | | | | F | UNCTION B | | | |----------------------|--------------------|------|---------|-----------|-------------|------------| | | | | | | | | | | | Core | Mapping | Smoother | Stochastics | Total SLOC | | | Actual Sizes | 5035 | 6115 | 244 | 748 | 12142 | | ds* | 5th Percentile | 3259 | 2520 | 2984 | 5292 | 14308 | | Adjusted
Estimate | Mode | 5166 | 3448 | 4487 | 9337 | 19990 | | Adju
Esti | 95th Percentile | 6116 | 4707 | 5800 | 10690 | 26955 | | % D | eviation from Mode | 3% | -44% | 1739% | 1148% | 65% | ^{*}Original estimates were adjusted to reflect the actual percentage of functionality delivered. Table 9. Functions C delivered software size vs. adjusted size estimates | rabio di i anon <u>ono o donvorda continaro dizo voi dajuetta dizo coninated</u> | | | | | | | | | | |--|-----------------|-------------|--------|--------------|----------|------------|--|--|--| | | | FUNCTION C | | | | | | | | | | | Measurement | Delay | | | | | | | | | | Models | Models | File Formats | Stations | Total SLOC | | | | | | Actual Sizes | 1959 | 689 | 7611 | 2105 | 12364 | | | | | Adjusted
Estimate | 5th Percentile | 4105 | 0 | 4073 | 3976 | 12187 | | | | | | Mode | 5369 | 0 | 5374 | 4833 | 14976 | | | | | | 95th Percentile | 6419 | 0 | 6348 | 6241 | 18928 | | | | | % Deviation from Mode | | 174% | -100% | -29% | 130% | 21% | | | | ^{*}Original estimates were adjusted to reflect the actual percentage of functionality delivered. In interpreting the results, it is necessary to take into consideration that the team estimated modules by subjectively comparing relative differences in capability - not lines of code. It was then assumed that a pairwise comparison of capabilities was equivalent to a pairwise comparison of software size as measured by lines of code. This is what we earlier refereed to as a key assumption. This assumption was necessary. The results suggest that there are fundamentally different types of capabilities that need to be estimated separately that correspond to algorithmic and procedural code. The two modules, which are off by an order of magnitude, are Smoother and Stochastics in Function B. These two modules are very algorithmically intensive, such that six months was spent in deriving and implementing the algorithms for 200-800 lines of code. If these two algorithmically intensive elements are excluded from the analysis, the total size estimate is within 30% of the actual (Table 10). This result strongly suggests that pairwise comparisons between capabilities can be used to estimate relative differences in size for procedural code but not algorithmically intensive code. This result is not particularly surprising, as a number of authors have also noted problems with the function point sizing metric when estimating algorithmically intensive code. Table 10. Function B actual size vs. adjusted size estimate excluding algorithmic elements | | | FUNCTION B | | | | | |-----------------------|-----------------|------------|---------|--------------|--|--| | | | Core | Mapping | Total SLOC** | | | | Actual Sizes | | 5035 | 6115 | 11150 | | | | *8 | 5th Percentile | 3259 | 2520 | 5791 | | | | usted | Mode | 5166 | 3448 | 8200 | | | | Adjusted
Estimates | 95th Percentile | 6116 | 4707 | 10810 | | | | % Deviation from Mode | | 3% | -44% | -26% | | | ^{*}Original estimates were adjusted to reflect the actual percentage of functionality delivered. ### 6. Conclusion The pairwise comparison technique is a general purpose estimation approach for capturing expert judgment and can be relatively easily implemented using Microsoft Excel if the geometric mean method is used to derive the ratio vector **V**. In this document, it has been documented how this approach can be further expanded into a probabilistic version using Monte Carlo methods in order to produce estimates of size distributions. The probabilistic pairwise comparison technique enables the estimator to systematically incorporate both estimation uncertainty as well as any uncertainty that arises from using multiple historical analogies as reference modules. Since these results are only suggestive of the methods effectiveness, more work clearly needs to be done to verify the effectiveness of this approach; it does appear that it can be used to ^{**} Excluding the algorithmically-intensive Stochastics and Smoother elements. improve software size estimates for non-algorithmically intensive code. Some changes in approach that could improve the techniques performance are to formally incorporate multiple estimators, which the technique can easily handle. Another is to assume that the distributions are correlated instead of independent as was done in the current study. Both of these changes ion approach should increase the estimated size variances and hence ranges for the 5th and 95th percentiles. One natural extension of this analysis is that if all pairwise comparisons are assumed to be log normally distributed, a relatively simple closed form solution exists for deriving the estimated size distributions as a function of the means. Standard deviations of the pairwise comparisons and the Monte Carlo computations would not be necessary. The disadvantage of this approach is that it has been found in practice to be easier for engineers to estimate low, most likely and a high than to subjectively estimate a mean and variance of a distribution, especially if it is skewed, as in a log normal distribution. The most important result of this study may be sociological in nature. The study proved to be a relatively successful example of introducing quantitative techniques into a skeptical software development team. Working with the technical staff in a way that they preferred and that was consistent with their cognitive models allowed us to engage them, eventually leading to a relatively rigorous size estimate and use of a cost model. ### 7. References - [1] Lum, K., and Hihn, J., "Estimation of Software Size and Effort Distributions Using Paired Ratio Comparison Matrices," Proceedings of the 3rd Annual Joint Conference of the International Society of Parametric Analysts (ISPA) and Society of Cost Analysis and Estimation (SCEA), 17-20 June, 2003, Orlando, FL. - [2] Hihn, J.M. and Habih-agahi, H. "Cost Estimation of Software Intensive Projects: A Survey of Current Practices," Proceedings of the Thirteenth IEEE International Conference on Software Engineering, May 13-16, 1991. (also SSORCE/EEA Report No. 2. August 1990) - [3] Saaty, T. The Analytic Hierarchy Process, McGraw-Hill, New York, NY: 1980. - [4] Saaty, T. "A Scaling method for Priorities in a Hierarchical Structure". J. Math. Psychology Vol. 15 1977, p 234-281. - [5] Bozoki, G. "Software Size Estimator (SSE)," Centre National d'Etudes Spatiales (CNES), Toulouse, France, June 1986. - [6] Lambert, J. "A Software Sizing Model," *Journal of Parametrics*, Vol. Vi, 1986, pp75-87. - [7] Bozoki, G. "An Expert Judgment-Based Software Sizing Model," *Journal of Parametrics*, Volume XIII, Number 1, May 1993. - [8] Shepperd, M. and Cartwright M. "Predicting with Sparse Data," *IEEE Transactions on Software* Engineering, Nov. 2001, Vol. 27, No. 11. - [9] Miranda, E.: "Establishing Software Size Using the Paired Comparisons Method." Proc. of the IWSM'99, Lac Superieur, Quebec, Canada, September 1999, pp. 132-142 - [10] Crawford, G. "The Geometric Mean Procedure for Estimating the Scale of a Judgment Matrix," *Mathematical Modelling*, vol. 9. No.3-5, pp. 327-334. 1987. - [11] Hihn, J.M. and Johnson, C. "Evaluation Techniques for Paired Ratio Comparison Matrices in a Hierarchical Decision Model," *Measurement in Economics*, Physical-Verlag Heidelberg, 1988. - [12] Crawford, G. and Williams, C "The Analysis of Subjective Judgment Matrices," Rand Corporation, R-2572-1-AF, May 1985. A Project AIR FORCE report prepared for the USAF. - [13] Miranda, E. "Improving Subjective Estimates Using Paired Comparisons," *IEEE Software*, Jan/Feb 2001.